

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Synthesis and NMR Spectroscopic Studies of Trichloroacetimidate Lactosyl Donor

Rafik W. Bassily^a

^a Chemistry Department, Faculty of Science, Alexandria University, Alexandria, EGYPT

To cite this Article Bassily, Rafik W.(1996) 'Synthesis and NMR Spectroscopic Studies of Trichloroacetimidate Lactosyl Donor', *Spectroscopy Letters*, 29: 3, 497 — 510

To link to this Article: DOI: 10.1080/00387019608006666

URL: <http://dx.doi.org/10.1080/00387019608006666>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS AND NMR SPECTROSCOPIC STUDIES OF TRICHLOROACETIMIDATE LACTOSYL DONOR

Key words: isomerization, temporary protecting-groups, trichloroacetimidate .

Rafik W. Bassily

Chemistry Department, Faculty of Science, Alexandria University,
Ebrahemia P.O. Box 426, Alexandria 21321 (EGYPT)

ABSTRACT

Allyl 3-*O*-acetyl-2,6-di-*O*-benzoyl-4-*O*-(2,6-di-*O*-benzoyl-3,4-*O*-isopropylidene- β -D-galactopyranosyl)- β -D-glucopyranoside (2) was prepared from 1, which was isomerized with palladium-charcoal to give 1-*O*-propenyl derivative 3 . On treatment of 3 with mercuric chloride and mercuric oxide afforded 4, which was converted into the required α -trichloroacetimidate lactosyl donor 5 . This imidate carrying transient acetyl group at *O*-3 and 1,3-dioxolane ring, serve as a temporary protecting-groups that can be removed to unmask *O*-3, *O*-3' and *O*-4' in further extension .

A detailed NMR analysis [^1H , ^{13}C , and 2D ^1H - ^1H correlation experiments (COSY)] was used for the structural elucidation of the building blocks, 2 and 5 .

INTRODUCTION

Protection of hydroxy functions of sugar derivatives by the allyl group has been shown to be a useful step¹ in the synthesis of oligosaccharides . Removal of the *O*-allyl group is achieved by a two-step process : isomerization of the allyl

ether to the 1-propenyl ether², and conversion of the propenyl ether into the free alcoholic group using acid³, HgCl₂/HgO⁴ or I₂/water⁵.

Glycosyl trichloroacetimidates, introduced in 1980⁶, are outstanding glycosyl donors⁷⁻⁹ because of their stability, reactivity, diastereoselectivity, and general applicability.

The present paper describes the preparation of the lactosyl donor **5**. Full details of NMR analysis [¹H, ¹³C and 2D ¹H-¹H correlation experiments (COSY)¹⁰] of the lactose derivatives **2** and **5** are now reported.

RESULTS AND DISCUSSION


It was reported by Nashed and Musser¹¹, that the partial benzoylation of allyl-4-*O*-(3,4-*O*-isopropylidene- β -D-galactopyranosyl)- β -D-glucopyranoside at low temperature yields, primarily, allyl 2,6-di-*O*-benzoyl-4-*O*-(2,6-di-*O*-benzoyl-3,4-*O*-isopropylidene- β -D-galactopyranosyl)- β -D-glucopyranoside (**1**), which has hydroxy group open at position 3. Acetylation of **1** with acetic anhydride in pyridine at ambient temperature gave allyl 3-*O*-acetyl-2,6-di-*O*-benzoyl-4-*O*-(2,6-di-*O*-benzoyl-3,4-*O*-isopropylidene- β -D-galactopyranosyl)- β -D-glucopyranoside (**2**).

The structure of **2** was proved through a study of the ¹H NMR, 2D ¹H-¹H correlation experiment (COSY), and ¹³C NMR. The ability of high resolution NMR spectroscopy to provide information about the structural details is firmly established.

The ¹H NMR spectrum shown in Figure 1 is characterized by a multiplet at δ 8.20-7.25 corresponding to 20 aromatic protons, a multiplet in the region (δ 5.76-5.63) characteristic of the resonance of the vinyl proton (-CH=), a triplet centered at δ 5.46 (J 9.5 Hz) which is attributed to H-3, indicating a *trans* - diaxial disposition of H-2 and H-4. A multiplet at δ 5.31-5.02 equivalent to four protons, and a multiplet at δ 4.82-3.66 is attributed to the sugar ring protons and -OCH₂- of the allyl moiety. A singlet at δ 2.10 due to CH₃CO and two singlets at δ 1.65 and 1.35 correspond to (CH₃)₂C.

Complete assignment of the ¹H resonances of the sugar residues and allyl group was made from 2D ¹H-¹H correlation experiment (COSY) (Figure 2).

Allyl Residue - Commencing from the resonance for the vinyl proton (-CH=), the chemical shifts of the CH₂= and -OCH₂- were established by tracing the

SCHEME

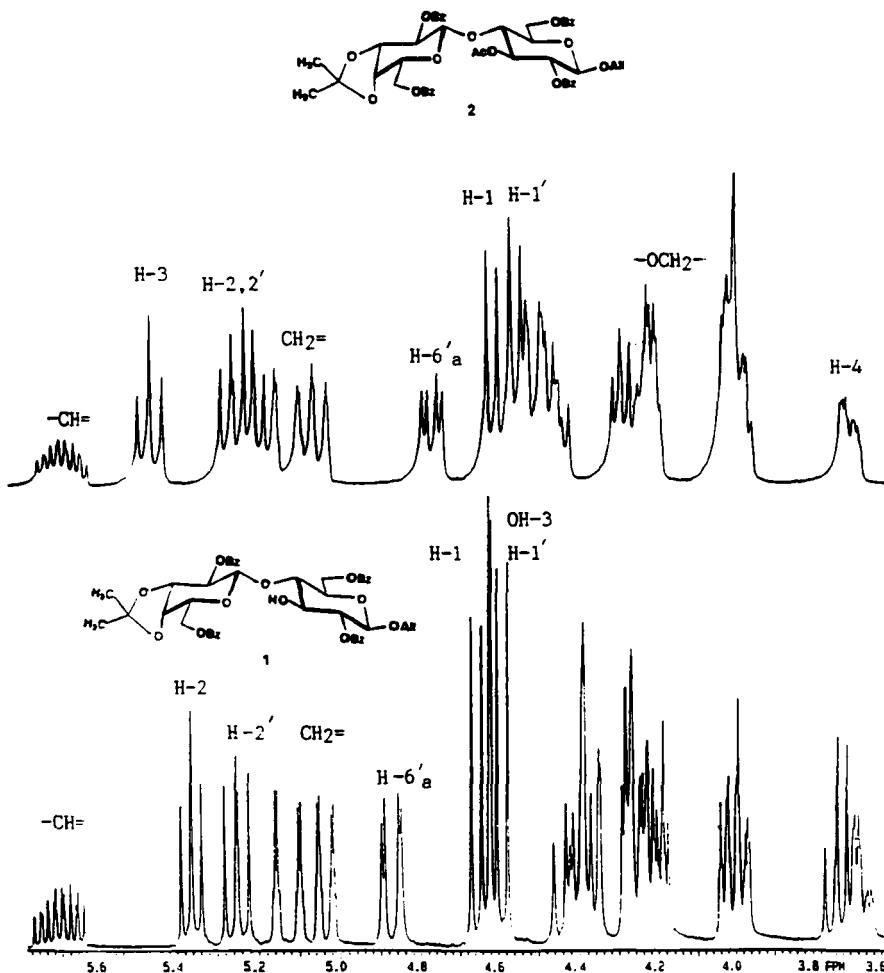


FIG. 1 A comparison of ^1H NMR spectra for compounds 1 and 2 .

connectivities *via* the cross-peaks . The signals at δ 5.16-5.03 is attributed to $\text{CH}_2=$, whereas the $-\text{OCH}_2-$ resonance lies in the region (δ 4.24-4.18 and δ 4.06-3.94) . In addition, a weak $\text{CH}_2=$ - $-\text{OCH}_2-$ cross-peak was noted due to the long range coupling .

Glucose Residue .- The chemical shift for H-3 was traced easily on the ^1H NMR spectrum (Figure 1) . Connectivities from H-3, the ^1H resonances of glucose

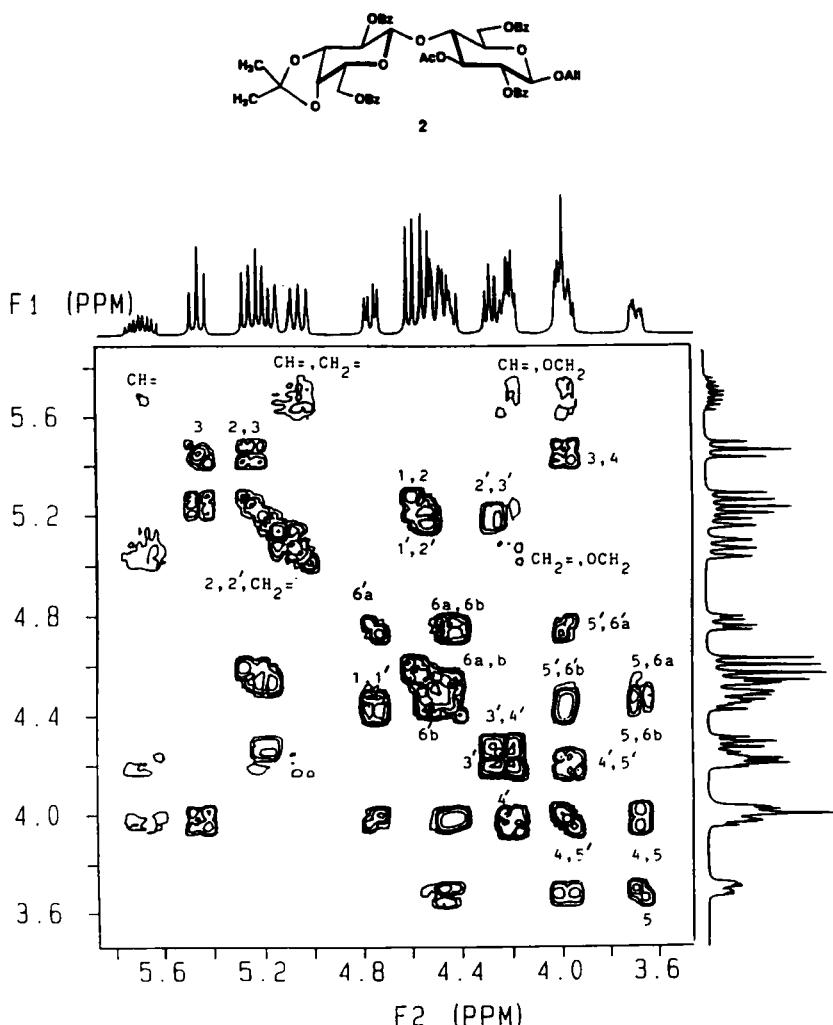


FIG. 2 COSY contour plot of the region δ 5.8-3.6 for compound 2.

residue were established from the (COSY) spectrum (Figure 2), which showed a triplet at δ 5.26 due to H-2. A doublet at δ 4.61 with large spacing ($J_{1,2}$ 7.9 Hz) corresponds to H-1 has a β -configuration. The signals for H-4, H-5, H-6_{a,b} lie in the region (δ 4.06-3.94, 3.74-3.66, and 4.54-4.40) respectively.

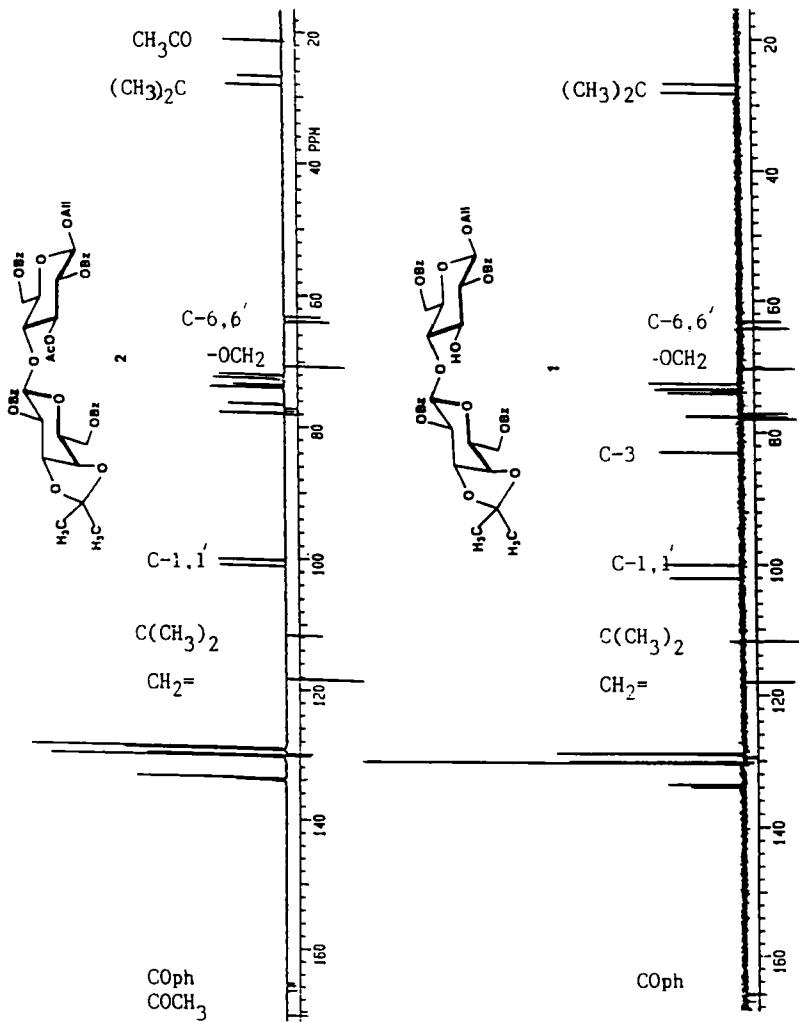


FIG. 3 A comparison of ^{13}C NMR spectra for compounds 1 and 2.

Galactose Residue .- Further inspection of the COSY spectrum (Figure 2) now identified the H-1' resonance (δ 4.55, $J_{1',2'}$ 8.1 Hz) and its cross-peak to H-2' (δ 5.21) . The chemical shifts for the H-3' to H-6'_{a,b} resonances were distinguished by tracing the connectivities *via* cross-peaks .

A further elucidation of the structure of compound 2 is obtained through a study of the ^{13}C NMR and the attached proton test (APT) experiment (Figure 3) . The spectrum shows acetyl carbonyl group at δ 171.00, and a multiplet at δ 167.00-165.50 corresponds to the four benzoyl carbonyl groups . The aromatic and the vinyl carbons appeared at δ 134.00-128.50, the inverted peaks correspond to $\text{CH}_2=\text{CH}-$ and the quaternary carbon atom in 1,3-dioxolane ring appeared at δ 118.28 and 111.66, respectively . The two signals at δ 101.15 and 100.17 are attributed to the two anomeric carbons having a β -configuration (C-1,1') . The inverted peak at δ 70.58 correspond to $-\text{OCH}_2-$, while the two signals at δ 63.88 and 63.21 are due to C-6,6' . The upright peaks at δ 77.85-72.07 correspond to the rest of the sugar ring methine carbons . The signals attributed to the dioxolane methyl groups appear at δ 28.13 and 26.81 . The small difference in the chemical shift is due to the flexibility of the 1,3-dioxolane ring^{12,13} and the most probable conformation¹⁴ of the 2,2-dimethyl-1,3-dioxolane ring is 4T_5 in which the two methyl groups are equivalent . Moreover, the high-field signal for the methyl acetyl group appear at δ 21.31 .

Boss and Scheffold² found that 10% palladium-activated charcoal is a particularly effective catalyst for isomerization of allyl ethers . The latter reagent was thus used for isomerization of 2 to 1-propenyl 3-*O*-acetyl-2,6-di-*O*-benzoyl-4-*O*-(2,6-di-*O*-benzoyl-3,4-*O*-isopropylidene- β -D-galactopyranosyl)- β -D-glucopyranoside (3) . The ^{13}C NMR chart of 3, as compared with that of 2, the inverted signals at δ 118.28 and 70.58 were disappeared . Moreover the intinsty of the peak at δ 28.00 was increased due to $=\text{CH}-\text{CH}_3$.

Treatment of 3 with mercuric chloride and mercuric oxide in aqueous acetone⁴ or iodine-water⁵ afforded 3-*O*-acetyl-2,6-di-*O*-benzoyl-4-*O*-(2,6-di-*O*-benzoyl-3,4-*O*-isopropylidene- β -D-galactopyranosyl)-D-glucopyranose (4) .

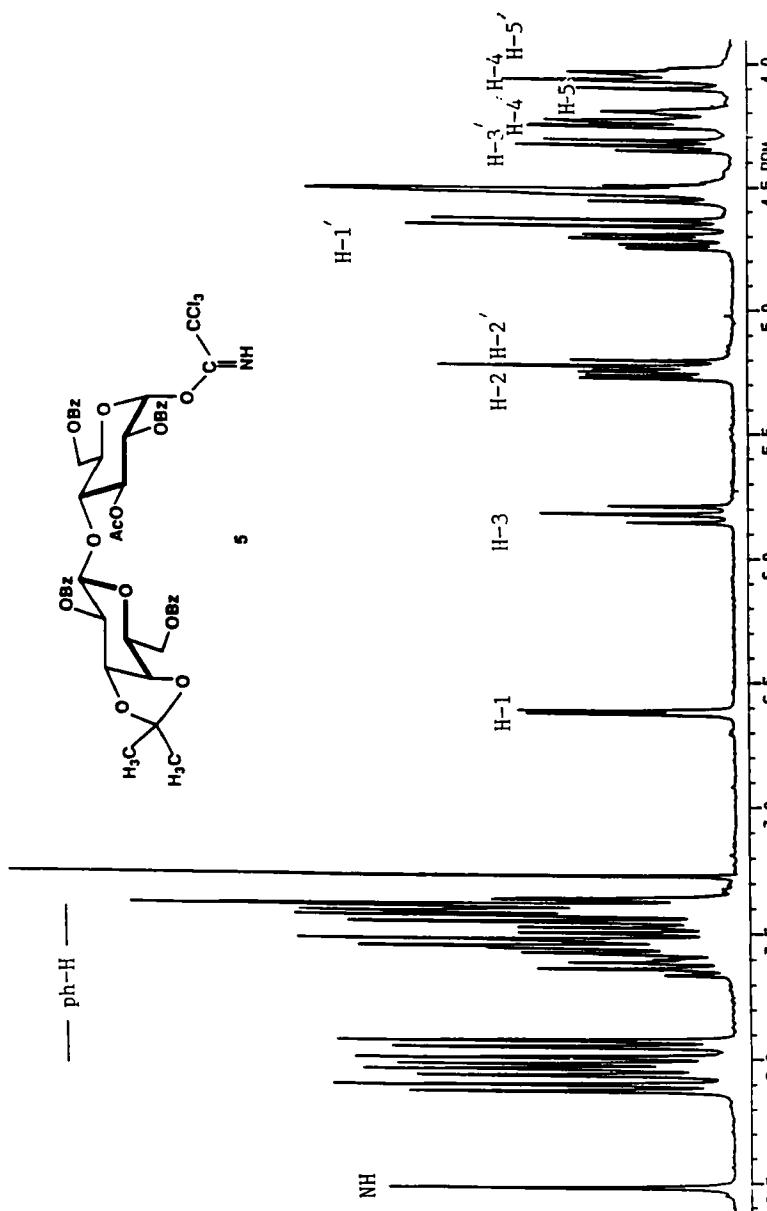
The structure of compound 4 was established on the basis of ^{13}C NMR spectrum, which showed the presence of α - and β -anomers with 2 : 1 ratio, respectively . The signals at δ 100.62 and 90.84 correspond to C-1',1 with α -configuration, while, the peaks of the anomeric carbons of the β -anomer appear at δ 100.80 and 96.35 . The 1-hydroxy compound 4 was then treated with

trichloroacetonitrile and 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU)¹⁵ to give 3-O-acetyl-2,6-di-O-benzoyl-4-O-(2,6-di-O-benzoyl-3,4-O-isopropylidene- β -D-galactopyranosyl)- α -D-glucopyranosyl trichloroacetimidate (**5**) in an excellent yield.

The ¹H NMR spectrum of compound **5** (Figure 4) exhibited a singlet at δ 8.52 corresponding to NH, a multiplet at δ 8.14-7.23 due to the aromatic protons. The presence of the low-field doublet of the anomeric proton (δ 6.62, $J_{1,2}$ 3.7 Hz) indicates the presence of the glucose moiety in an α -configuration. A triplet centered at δ 5.82 (J 9.7 Hz) which is attributed to H-3, and a multiplet at δ 5.28-3.95 correspond to the rest of the sugar ring protons.

A further characterization of the structure of compound **5** is obtained through a study of the 2D ¹H-¹H correlation experiment (COSY) Figure 5.

Glucose Moiety .- Commencing from the resonance for H-1, the chemical shifts for H-1 to H-4 were traced, which showed a doublet of doublets at δ 5.25 with small and large spacing ($J_{2,1}$ 3.8 and $J_{2,3}$ 10.1 Hz) due to H-2, and a multiplet at δ 4.10-4.00 correspond to H-4.


Galactose Moiety .- As previously mentioned the interpretation of the (COSY) experiment chart requires knowing the exact position of at least one proton, which revealed a triplet at δ 5.22 due to H-2' with large splitting. A doublet at δ 4.64 ($J_{1',2'}$ 7.7 Hz) corresponding to H-1', a triplet at δ 4.34 ($J_{3',2'}$ 6.5 and $J_{3',4'}$ 5.8 Hz) is attributed to H-3', and a doublet of doublets at δ 4.26 ($J_{4',3'}$ 5.8 and $J_{4',5'}$ 2.0 Hz) is due to H-4'. It is evident, primarily from these *J* values that a major change from ⁴C₁ (**D**) conformation accompanies the formation of 1,3-dioxolane ring.

Moreover, characterization of compound **5** was based on its ¹³C NMR and the attached proton test (APT) experiment (Figure 6), in which the signals of C=NH, C-1 with an α -configuration and CCl₃ appeared at δ 160.60, 92.94 and 77.27, respectively.

These NMR studies have established unambiguously that the synthetic route employed here has led to the preparation of the lactosyl donor **5** having a temporary protecting-groups that can be removed to unmask O-3¹⁶, O-3' and O-4' in further extension.

EXPERIMENTAL

General methods .- The instrumental and chromatographic procedures employed were given previously¹⁷. The following solvent combinations (v/v) were

FIG. 4 ^1H NMR spectrum for compound 5.

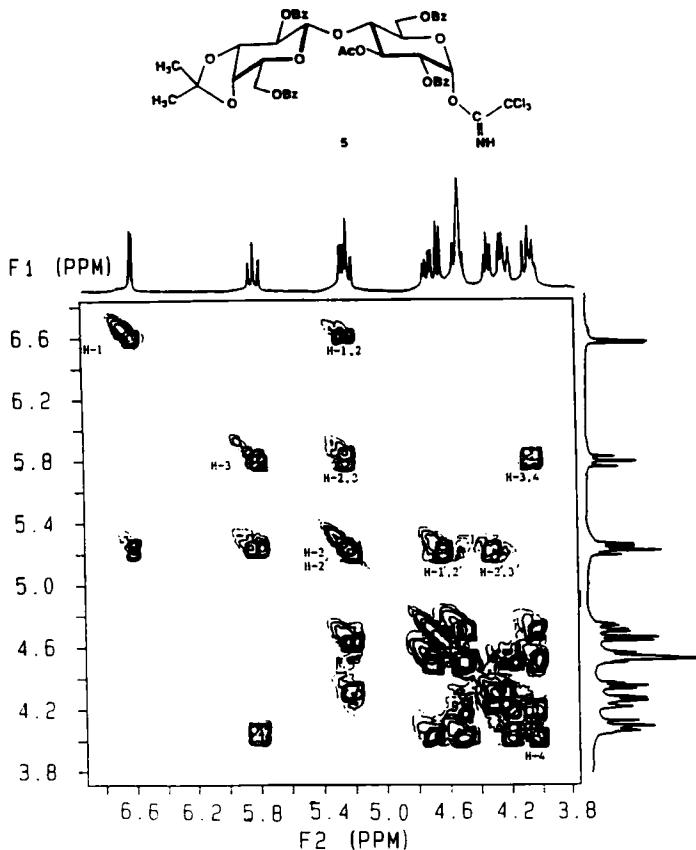


FIG. 5 COSY contour plot of the region δ 6.8-3.8 for compound 5.

utilized for thin-layer and column chromatography: *A*, 19:1 chloroform-acetone; *B*, 8:2 toluene-ethylacetate; *C*, 9:1 toluene-ethylacetate; *D*, 29:1 chloroform-acetone.

Allyl 3-O-acetyl-2,6-di-O-benzoyl-4-O-(2,6-di-O-benzoyl-3,4-O-isopropylidene- β -D-galactopyranosyl)- β -D-glucopyranoside (**2**) .- To a solution of allyl 2,6-di-O-benzoyl-4-O-(2,6-di-O-benzoyl-3,4-O-isopropylidene- β -D-galactopyranosyl)- β -D-glucopyranoside (**1**) (2.1 g, 2.5 mmol) in dry pyridine (10 mL) acetic anhydride (5 mL) was added . The reaction mixture was stirred for 1 h at room

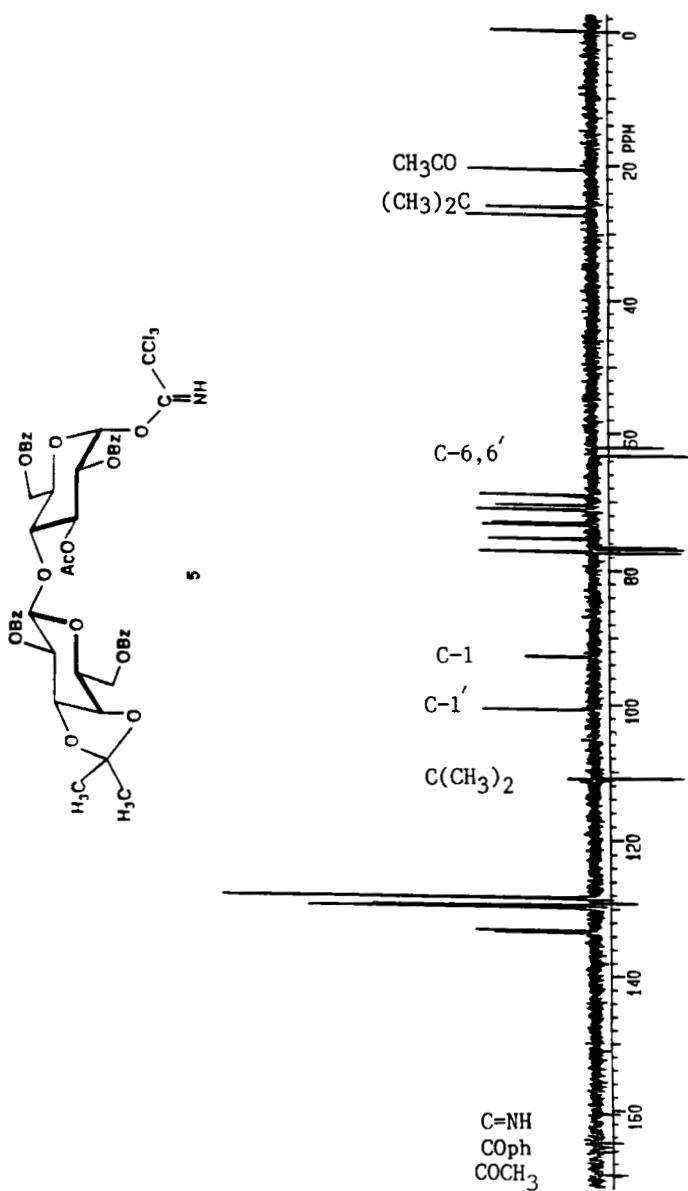


FIG. 6 ^{13}C NMR spectrum for compound 5.

temperature, when t.l.c. (solvent A) showed complete disappearance of the starting material. Methanol was added to the cooled solution to destroy excess acetic anhydride, the solvents were evaporated till dryness under reduced pressure. The residue was dissolved in dichloromethane, washed successively with aqueous hydrochloric acid (5%), water, sodium hydrogencarbonate solution (5%), water, dried over anhydrous sodium sulphate, and evaporated to dryness to give the title compound **2** as a syrup in almost quantitative yield. ^1H NMR (CDCl_3) : δ 8.20-7.25 (m, 20H, Ph-H), 5.76-5.63 (m, 1H, $\text{CH}_2=\text{CH}-$), 5.46 (t, 1H, J 9.5 Hz, *H*-3), 5.31-5.02 (m, 4H, *H*-2,2' and $\text{CH}_2=\text{CH}-$), 4.81-4.40 (m, 6H, *H*-1,1' and 2 CH_2), 4.32-4.18 (m, 3H, *H*-3',4' and 0.5 - OCH_2-), 4.06-3.94 (m, 3H, *H*-4,5' and 0.5 OCH_2), 3.74-3.66 (m, 1H, *H*-5) 2.10 (s, 3H, CH_3CO), 1.65, 1.35 [2s, 6H, $(\text{CH}_3)_2\text{C}$]; ^{13}C NMR (CDCl_3) : δ 171.00 (COCH_3), 167.00-165.50 (4 COPh), 134.00-128.50 (aromatic and vinyl carbons), 118.28 ($\text{CH}_2=\text{CH}$), 111.66 [$\text{C}(\text{CH}_3)_2$], 101.15, 100.17 (C-1,1'), 70.58 (=CH- CH_2O), 63.88, 63.21 (C-6,6'), 28.13, 26.81 [$(\text{CH}_3)_2\text{C}$], and 21.31 (CH_3CO).

3-O-Acetyl-2,6-di-O-benzoyl-4-O-(2,6-di-O-benzoyl-3,4-O-isopropylidene- β -D-galactopyranosyl)- α -D-glucopyranosyl trichloroacetimidate (5) .- To a solution of **2** (1.5 g, 1.7 mmol) in methanol (27 mL) and water (3 mL) 10% palladium-activated charcoal (0.5 g) was added. The resulting suspension was boiled for 8 h under reflux with stirring. T.l.c. (solvent B) (after hydrolysis with mercuric chloride and mercuric oxide⁴ or iodine in aqueous acetone⁵), then showed that isomerization was complete. The residue obtained by removal of the catalyst and evaporation of the solvents was chromatographed on a column of silica gel (solvent C) to afford 1-propenyl 3-O-acetyl-2,6-di-O-benzoyl-4-O-(2,6-di-O-benzoyl-3,4-O-isopropylidene- β -D-galactopyranosyl)- β -D-glucopyranoside (3) as a glassy foam (1.13 g, 75%). To a solution of **3** (0.8 g, 0.91 mmol) in acetone (15 mL) and water (2 mL), mercuric chloride (350 mg, 1.3 mmol) and mercuric oxide (193 mg, 0.90 mmol) were added. The resulting suspension was stirred for 30 min., at which time t.l.c. (solvent B) showed the reaction was complete. The mixture was then filtered through Celite, washed with acetone, and the combined filterates were evaporated. Chromatography of the residue on a column of silica gel (solvent C) gave 0.61 g (80%) of 3-O-acetyl-2,6-di-O-benzoyl-4-O-(2,6-di-O-benzoyl-3,4-O-isopropylidene- β -D-galactopyranosyl)-D-glucopyranose (4) as a syrup. ^{13}C NMR (CDCl_3) : similar to that of **2** but showing δ 96.35

(C-1, β -configuration), 90.84 (C-1, α -configuration) and no signals for the allyl carbons.

To a solution of **4** (0.5 g, 0.60 mmol) in dry dichloromethane (5 mL), trichloroacetonitrile (0.5 mL) and 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) (80 μ L, 0.53 mmol) were added. The reaction mixture was stirred for 30 min. at 0°C, at which time t.l.c. (solvent A) showed complete reaction. The reaction mixture was filtered through Celite, washed with dichloromethane, concentrated and purified on a short column of silica gel (solvent D), to give 430 mg (73%) of the title compound as an amorphous solid; $[\alpha]_D + 58.3^\circ$, $[\alpha]_{436} + 112.1^\circ$ (c 2.3, dichloromethane); ^1H NMR (CDCl_3) : δ 8.52 (s, 1H, NH), 8.14-7.23 (m, 20H, Ph-H), 6.62 (d, 1H, $J_{1,2}$ 3.7 Hz, H-1), 5.82 (t, 1H, J 9.7 Hz, H-3), 5.28-5.14 (m, 2H, H-2,2'), 4.75-4.45 (m, 5H, H-1' and 2CH_2), 4.34 (t, 1H, $J_{3',2'}$ 6.5, $J_{3',4'}$ 5.8 Hz, H-3'), 4.26 (dd, $J_{4',3'}$ 5.8, $J_{4',5'}$ 2.0 Hz, H-4'), 4.22-4.15 and 4.10-3.95 (2m, 3H, H-4,5,5'), 2.05 (s, 3H, CH_3CO), 1.65, 1.35 [2s, 6H, $(\text{CH}_3)_2\text{C}$]; ^{13}C NMR (CDCl_3) : δ 169.70 (COCH_3), 166.20-165.00 (4 COPh), 160.60 ($\text{C}=\text{NH}$), 133.50-128.00 (aromatic carbons), 111.06 [$\text{C}(\text{CH}_3)_2$], 100.84 (C-1'), 92.94 (C-1), 77.27 (CCl_3), 75.42, 73.49, 73.21, 71.38, 71.22, 70.63, 69.21, 63.32, 62.12 (C-6,6'), 27.45, 26.17 [$(\text{CH}_3)_2\text{C}$], 20.82 (CH_3CO); negative-ion LSIMS : m/z 985.0 ($\text{M}-\text{H}^+$). *Anal.* Calc. for $\text{C}_{47}\text{H}_{44}\text{Cl}_3\text{NO}_{16}$ (985.2) : C, 57.30; H, 4.50; N, 1.42. Found : C, 57.03; H, 4.49; N, 1.31.

REFERENCES

1. Gigg R., *J. Chem. Soc. Perkin Trans. 1*, 1980, 738-740.
2. Boss R., Scheffold R., *Angew. Chem. Int. Ed. Engl.*, 1976, 15, 558-559.
3. Cunningham J., Gigg R., Warren C.D., *Tetrahedron Lett.*, 1964, 1191-1196.
4. Gigg R., Warren C.D., *J. Chem. Soc., C*, 1968, 1903-1911.
5. Nashed M.A., Anderson L., *J. Chem. Soc., Chem. Commun.*, 1982, 1274-1276.
6. Schmidt R.R., Michel J., *Angew. Chem.*, 1980, 92, 763-764.
7. Schmidt R.R., *Angew. Chem.*, 1986, 98, 213-236.
8. Schmidt R.R., *Angew. Chem. Int. Ed. Engl.*, 1986, 25, 212-235.
9. Schmidt R.R., *Pure Appl. Chem.*, 1989, 61, 1257-1270.
10. Dutton G.G.S., Mintah A.K., Stephen K., Parolis H., Dell A., Reason A., *Carbohydr. Res.*, 1992, 231, 39-50.

11. Nashed M.A., Musser J.H., *Carbohydr. Res.*, 1993, 250, C1-C4 .
12. Willy W.E., Binsch G., Eliel E.L., *J. Am. Chem. Soc.*, 1970, 92, 5394-5402 .
13. Riddell F.G., *The Conformational Analysis of Heterocyclic Compounds*, Academic Press, London, 1980, pp. 56-58 .
14. Pihlaja J., Nurmi T., *Finn. Chem. Lett.*, 1977, 141-143 .
15. Numata M., Sugimoto M., Koike K., Ogawa T., *Carbohydr. Res.*, 1987, 163, 209-225.
16. Byramova N.É., Ovchinnikov M.V., Backinowsky L.V., Kochetkov N.K., *Carbohydr. Res.*, 1983, 124, C8-C11 .
17. Bassily R.W., El-Sokkary R.I., Silwanis B.A., Nematalla A.S., Nashed M.A., *Carbohydr. Res.*, 1993, 239, 197-207 .

Received: October 11, 1995

Accepted: December 1, 1995